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ABSTRACT 

The diocotron ( o r  slipping s t r eam)  instability of low density 
( w  << wc) e lectron beams in  crossed e lec t r ic  and magnetic fields is 
considered for  a cylindrical  geometry with a radial  e lec t r ic  field and 
an  azimuthal magnetic field. 
a s sumed  to have no the rma l  energy, collisional effects a r e  neglected, 
the quasi-static approximation is  made,  and perturbations -of the 
e lec t r ic  field along the magnetic field a r e  ignored. 
density distribution the important normal  modes of the electron beam 
correspond to  two d iscre te  eigenvalues. A condition for the stability 
of these modes is derived. This condition shows that, within the 
approximations of the analysis ,  the electron beam can be stabilized 
against  diocotron modes of a l l  wavelengths by proper  selection of 
dimensions. 
shaped space radiation shield is  discussed. 
s t ra ight  cylinder geometry to be a reasonable approximation to a 
to rus  with a l a rge  radius  ratio,  it is  shown that the c rossed  field 
e lectron beam surrounding a space radiation shield will, within the 
s a m e  approximations, be stable against  diocotron instabil i t ies when 
the beam is sufficiently thick. 

P 

In the analysis  the electrons a r e  

For  a simple 

The application of this theory to  a proposed toroidally- 
Assuming the long 
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I. INTRODUCTION 

This  note considers  the diocotron ( o r  slipping s t r eam)  instabil i t ies 

The shield is described i n  detail  by Levy 
which might occur i n  a geometry applicable to a proposed toroidally- 
shaped sp  ce radiation shield. 
and Janes' and i t s  important features a r e  shown in  Fig. 1. The geometry 
of the shie d i s  the same a s  that of a toroidal  magnetron as  analyzed by 
Buneman, ' except that for  the space shield no outer conducting ( o r  r e -  
active) surface i s  involved. 
the to rus  can be approximated by a long straight cylinder which can support 
waves moving paral le l  to i t s  axis. The wavelengths of these waves, how- 
eve r ,  mus t  be shor te r  than approximately 27r t imes  the ma jo r  radius R of 
the torus .  This approximation neglects the asymmetry  of the magnetic 
field intensity about the minor  ax is  of the torus  and the curvature  of the 
electron flow direction. However, for  reasonable radius ra t ios ,  i t  is  
anticipated that the resu l t s  f rom a n  exact toroidal geometry formulation 
will not differ f rom those given by this analysis  i n  any fundamental way. 

Following Buneman, it will be assumed that 

Instead of considering only a geometry applicable to the space shield, 
the m o r e  general  geometry of Fig. 2 will be analyzed. 
will be assumed that the electron density is sufficiently low relative to the 
magnetic field intensity so that w << w c ,  the symbols re fer r ing ,  respec-  
tively, to the plasma and cyclotrgn frequencies. 
assumption, perturbations in  the component of the e lec t r ic  field along 
the magnetic field will be ignored. 
have no the rma l  energy and that their drift speeds a r e  much l e s s  than the 
speed of light (the quasi-s ta t ic  approximation). 

In the analysis  it 

In accord  with this  

It is fur ther  assumed that the electrons 

The diocotron (o r  slipping s t ream)  instability has  been known for  some 
t ime  and fo rms  the basis  of the small-signal theory of the r s e 

model  of the electron beam is used. 
especially when the wavelengths of in te res t  a r e  short  compared to  the charac-  
t e r i s t i c  dimensions of the beam. However, the long wavelength behavior of 
the diocotron instability is substantially influenced by the par t icular  geometry 
under consideration. This i s  especially t rue  when, a s  in the space radiation 
shield,  the 1 sma frequency w i s  much l e s s  than the cyclotron frequency wC. 
In th i s  case',' growth occurs  ocly f o r  wavelengths which a r e  long compared 
to  the  beam thickness. Since there  i s  an  absolute maximum wavelength for 
per turbat ions in  the space shield geometry it might be possible to exclude unstable 
modes  altogether i f  the beam were made  sufficiently thick. This  note gives a 
quantitative evaluation of this  effect. 

microwave magnetron. In mos t  t reatments  of the problem %,', g ,  2 replldanar 
This approximation is generally adequate, 
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CLOUD DRIFT 

POSITIVELY CHARGED CONDUCTOR 

ELECTRON CLOUD 

Fig. 1 Idealization of space radiation shield. The space vehicle (the 
inner conductor of radius a )  i s  e lectrostat ical ly  shielded f r o m  
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Fig. 2 C r o s s  section of the geometry considered in  the text. 
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11. BASIC FORMULATION 

The geometry to  be considered (Fig. 2) consis ts  of two concentric,  
perfectly conducting cylinders of radi i  a and d aligned along the z axis.  
An azimuthal magnetic field whose intensity va r i e s  inversely with the 
distance r f rom the axis, ac ts  i n  the space between the two conductors. 
This  magnetic field will be written as  

It is consistent with the assumption that the electron drift  speed is small  

the cur ren t  in  the electron beam. In the equilibrium (unperturbed) state 
the space between the electrodes i s  filled with electrons having a density 
distribution n(o) ( r )  which will be left a r b i t r a r y  for the moment. 
t r o n  density distribution n(O)( r)  determines an equilibrium radial  e lec t r ic  
field do) ( r )  through Gauss '  law: 

compared to the speed of light to ignore the change in  Be") ( induced by 

The e lec-  

r 

The radial  e lec t r ic  field on the inner  electrode is related to the e lec t r ic  
charge (pe r  unit axial  length) at that surface by 

Q 
2a a c  E(') (a) = r 

0 
( 2 .  3 )  

In  the unperturbed s ta te  the electron cloud moves in the axial  direction 
with a velocity v(0) ( r )  = E(0) ( r ) / B g )  (r) .  
e lec t r ic  field which i s  due To the charge on the inner conductor is propor-  
t ional to Q/r.  Since the magnetic field Bg) i s  a l so  proportional to  l / r ,  
a par t icular  value of Q merely determines the magnitude of a uniform 
velocity of t ranslat ion for the ent i re  e lectron cloud. 
that the charge on the inner conductor can be made  to  vanish by t r a n s -  
fe r r ing  to  a coordinate system moving with a n  appropriate  uniform 
velocity in  the axial  direction, Now such a t ransformation can have no 
effect on the stability o r  otherwise of the electron beam. 
i s  that the r e a l  par t  of the frequency of the normal  modes (waves) is 

Now that par t  of the radial  
z 

It therefore  follows 

All that happens 
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Doppler shifted; 
stability is  unaffected. 
of Q m a y  be taken to  be zero.  
a l so  makes  the radial  component of the e lec t r ic  field a t  the inner  
conductor vanish. 
ze ro  value of 0 can be found by Doppler-shifting the frequencies deduced 
f rom this analysis. 
inner conductor and hence the potential applied between the two conductors 
have no effect on the stability of the electron beam. 
geometry the electron beam cannot be stabilized mere ly  by applying a 
la rge  potential between the conducting walls. 

the complex par t  of the frequency which determines 
Therefore ,  without 10s s of generali ty,  the value 

F r o m  Eq. (2 .  3 )  it is seen that this  choice 

The r e a l  par t  of the frequency appropriate to  a non- 

The preceding r e m a r k s  show that the charge on the 

Thus,  in this  

\ 

It i s  anticipated that the frequencies of in te res t  in this  study will be 
of the o rde r  of w 2/oc. 
TL..ch less than 
t ions of the component of the e lec t r ic  field in the direction of the magnetic 
field and hence to consider only two dimensional perturbations.  
observations justify taking for the electronic equations of motion: 

This frequency is much l e s s  than wn and very 
-1- L I ~ C : ~  - - -  e i u r e ,  - r -  it  seems reasonable to  igndre per turba-  

C’ 

These 

(2.4)  

where the subscripts r ,  8 and z of B, E, and v indicate, respectively,  
radial ,  azimuthal and axial field components. Applying the quasi-  s ta t ic  
approximation the e lec t r ic  field is simply related to  a potential 4 by the 
equations: 

The condition of conservation of e lectrons r equ i r e s  that 

Using Eqs. (2 .4)  and (2.  5) the equation of conservation of e lectrons,  Eq. 
(2.  6 ) .  can be written as  

( 2 . 7 )  

In o rde r  to l inearize Eq. (2. 7 )  i t  will be a s sumed  that the potential 4 
the electron density distribution n each have ze ro  o r d e r  (unperturbed)  
and f i r s t  o rde r  (perturbed) components and a r e  of the f o r m  

and 
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4 = $ ( O ) ( r )  t $(')(r) exp 

n = n(O)(r) t n ( l ) ( r )  exp k ( k z  - ut)] 

where a s  usual the physical quantities a r e  the r e a l  pa r t s  of the complex 
quantities appearing i n  Eq. (2. 8). 
in  the z direction (along the direction of e lectron flow) which will be 
growing in  t ime (unstable) i f  the imaginary par t  of w 
l inearization with the assumed forms of 4 and n, Eq. (2 .7 )  yields: 

This choice represents  a wave moving 

i s  positive. On 

k+ ( l ) ( r )  - [r2n(0)(r)l . (2 .9 )  
[W - kv(o)(r)l Z n ( ' ) ( r )  = d r  

Substituting Eq. (2.  9) in Poisson 's  equation yields the following differen- 
t i a l  equation for the perturbation potential: 

(2.  10)  

where h e r e  and henceforth the superscr ipt  (1)  on the perturbation potential 
h a s  been omitted for convenience. 

Equation (2.  10) i s  s imilar  to  the equation governing the Kelvin- 
Helmholtz instabilit 
lit e ra ture .  8 , 9 ~  
magnetic c a s e s  has  been discussed by Levy7 and will not be considered 
fur ther  here .  
cus tomary  to set  the t e r m  on the right of Eq. (2. 10) to  ze ro  by a par t icular  
choice of the shear  which is analogous to  n(O)(r) here .  
ca se ,  the z e r o  o rde r  e lectron density distribution will be assumed to be 

which has  been t rea ted  extensively in  the aerodynamic 
lT,  l 2  The analogy between the aerodynamic and e lec t ro-  

In o rde r  to solve the analogous aerodynamic problem, it is 

Similarly,  in this  

n(O)(r) = 1 :b2/r2 , b i r I c 

, c < r ~ d  

(2.  11 )  

d where  N = n(O)(b) i s  a constant. This  choice makes  - dr  p2n(o ) ( r ) ]  zero  
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in each of t e t r e e  regions. 
makes  o ’/w> constant throughout the electron beam. In the inter ior  of , 
each of t#e three regions, the electron density distribution of Eq. (2 .  11) 
reduces Eq. (2.10) to the much s impler  form: 

It i s  interesting to note that this  choice a l so  

-!- d 2 
r d r  

‘::”] - k d ( r )  = 0 (2.12)  

whose solutions are  the modified Besse l  functions of the f i r s t  and second 
kind of o rde r  zero. In addition, f rom Eq. (2.  9 ) ,  the perturbed electron 
density n ( ’ ) ( r )  vanishes in the inter ior  of each of the three  regions, Thus,  
the perturbation is greatly simplified and involves no perturbation charge 
density a t  all in the inter ior  of the electron cloud, but mere ly  a n  accumula-  
tion of charge at each of the two f r ee  surfaces .  

This  observation leads to  a consideration of the conditions to  be 
applied to the perturbation potential a c r o s s  the f r ee  sur faces  a t  r = b and 
r = c. F i r s t ,  clearly the per turbed potential + ( r )  must  be continuous 

a c r o s s  the surface. 
surface r = b i t  is convenient t o  integrate Eq. (2.  10) for a short  distance 
f rom r = b - 6 to r = b f 6 and then let 6 + 0. In performing the in tegra-  
tion it i s  useful to note that the bracket containing o is virtually constant 
over this small range and can therefore  be taken out of the integration. 
Since +( r )  is continuous, the integral  of + ( r )  over a vanishingly small 
range vanishes. Using these facts ,  integrating Eq. (2. 10) and taking the 
l imit  6 + 0,  the following jump condition is  obtained: 

d44r) In o rde r  to obtain the change in  ar a c r o s s  the 

where w and wc (which vary through the beam) a r e  evaluated at r = b. 
A s imi la r  analysis at r = c r e su l t s  in the jump condition P 

The specification of the problem is completed by noting that the appropriate  
boundary conditions for  the per turbed potential on the conducting electrodes 
at  r = a and r = d a r e  4(a)  = 4(d) = 0.  

At this point the problem has  been completely specified. The cha rac -  
t e r i s t i c  equation for w can be derived by writing out the eigenfunctions 
which sat isfy Eq. (2.  12)  and applying the boundary and jump conditions. 
The result ing character is t ic  equation will be a polynomial i n  w 
be of the s a m e  degree a s  the number of su r faces  where n(O)(r) is  d i s -  
continuous. 

which will 

For the present case  with only two such su r faces  the 
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. 
charac te r i s t ic  equation is simply a quadratic in  w . 
of the quadratic a r e  rea l ,  ei ther both roots  will be r ea l  o r  the roots  will 
occur i n  complex conjugate pairs.  
corresponds to a growing (unstable) wave and the other to  a n  evanescent 
(damped) wave. 
the charac te r i s t ic  equation a r e  real ,  in  which case  each wave can 
propagate at constant amplitude. 

Since the coefficients 

In the la t te r  case ,  one of the roots  

Thus,  stability can be claimed only when all the roots  of 

The method descr ibed above cannot, as  it stands, be used to  make  

In the 
any firm statement about stability. 
be made  only when the complete se t  of normal  modes is  obtained. 
a ove t reatment  only those modes corresponding to discontinuities in 

seen  by observing that no initial condition involving a perturbation in the 
charge density in  the in te r ior  of the beam can be descr ibed by them. 
remaining modes correspond to a continuous spectrum of eigenva u 

t e r m .  An analogous problem has been extensively t rea ted  by Case 
and DikiiI5 in  connection with the problem of aerodynamic shear  flow. 
These  analyses ,  which ignore dissipative mechanisms (viscosity) indicate 
that all of the normal  modes corresponding to the continuous spectrum of 
eigenvalues decay like various powers of the t ime for  long t i m e s  and 
therefore  a r e  not important in  a determination of stability. 
sipative mechanisms a re  not considered in  this  paper (i. e. collisions a r e  
neglected and the electrons a r e  assumed to  be cold) formally the con- 
tinuous spectrum of eigenvalues can be ignored in the stabil i ty analysis.  
Stability is therefore  determined solely by the normal  modes c o r r e s -  
ponding to  the d iscre te  eigenvalues. 
could cause the continuous spectrum of eigenvalues to become important 
in the stabil i ty analysis ;  however, such considerations a r e  beyond the 
scope of the present  t reatment .  

This  is because such a statement can 

n Po) ( r )  have been considered. Thap this  se t  of modes is not complete is 

come essentially f rom the vanishing at some point of the [ w  - kv, ioY7r;yd 

The  

13, 14 

Since d i s -  

Inclusion of dissipative mechanisms 
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111. ESTABLISHMENT O F  THE STABILITY CONDITION 

Since no fur ther  difficulty of a theoret ical  nature  remains ,  the eigen- 

The first s tep is to  determine the ze ro  
functions, the dispers ion relation, and the condition that both roots  of the 
la t te r  be r e a l  will now be obtained. 
o r d e r  potential and e lec t r ic  field that a r e  implied by the distribution of 
charge specified in  Eq. (2. 11). 
is being employed, the ze ro  order  e lec t r ic  field in  region 1 ( a L  r < b) 
vanishes identically. Taking the inner conductor ( r  = a) to be a t  ze ro  
potential, the ze ro  order  potential in  region 1 a l so  vanishes identically. 
The ze ro  o rde r  distributions i n  the two remaining regions a r e  found to 
be : 

Since a coordinate sys tem in  which Q = 0 

region 2 ;  b 5 r 5 c 
3 

2 2 
(0) Neb 4 ( r )  = 

0 

region 3 ;  cc r  L d 
3 

7 3 

(3.1) 

( 3 . 2 )  

The solutions of Eq. (2.  12)  a r e  l inear  combinations of the modified 
Besse l  functions Io ( k r )  and Ko(kr). 
( b  L rS c )  will be assumed to be 

The perturbation potential in  region 2 

where  p and y a r e  a r b i t r a r y  constants. 
region 1 (a 5 r < b) must  vanish a t  r 
at r = b. 
found to be: 

The perturbation potential in 
= a and be continuous with Eq. (3. 3) 

F r o m  these conditions the perturbation potential in region 1 is 

. 
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Similar ly ,  the perturbation potential in region 3 ( c <  r <_ d) must  vanish at  
r = d and be continuous with Eq. (3.  3 )  a t  r = c and it i s  found to  be: 

Applying the jump conditions given hy  Eqs. ( 2 .  13) and ( 2 .  !d) 3t 
r = b and r = c,  respectively,  r e su l t s  i n  the conditions 

and 

In these equations and henceforward, the unit of frequency h a s  been taken 
to  be w p z / a c  which, as  before,  i s  evaluated at r = b. The  d ispers ion  
relation is now obtained by writ ing down the condition for consistency of 
these  two l inear  homogeneous equations in  p and y. Defining 

a = I (ka) Ko(kb)  - I o ( k b ) K o ( k a )  

etc. 

a b  0 

the dispers ion relation may be wri t ten a s  

(3 .8)  

. 
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C 
a ad  w 2  + kb [aac acd - aab abd 3- tn r] 

( 3 . 9 )  

The condition for stability i s  that the roots w 
that  the discriminant of the quadratic in  w ,  Eq. (3.9) ,  be positive. A d e r  
some reduction, this condition can be writ ten as: 

be r e a l  and consequently 

2 2 

[aab abd + a  ac  a cd + a a d  , e n  +] - 
aab acd] 2 0. 

(3.10) 

T o  the extent that the approximations of the analysis  a r e  valid, this is 
both a necessary  and a sufficient condition for stability. 

. 
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IV. DEDUCTIONS FROM T H E  STABILITY CONDITION 

, In this section the general  stability condition of inequality (3. 10) is 
examined. 
modes of all wavelengths is  obtained. 
geometr ical  condition a r e  considered. 
approximates the space radiation shield i s  examined. 

F i r s t  a simple geometrical  condition for  stability of diocotron 
Next the implications of this  
Finally the limiting case  which 

The geometr ical  implications of the general  stability condition of 
In the short  wavelength l imit  inequality (3. 10) will now be considered. 

(k -  m) ? it  can be shown that inequality (3.  10) is always satisfied. 
long wavelength limit (k -+ 0) , inequality (3. 10) is  satisfied i f  and only i f  

In the 

(4.1) 

. 
Numerical computations have shown that the function on the left of inequality 
(3.  10) i s  a monotonically increasing function of k. The longest wave- 
lengths a r e  the most  likely to be unstable, that i s ,  i n  a given geometry. 
The re fo re?  inequality (4. 1) is a necessary  and sufficient condition for 
stabil i ty of diocotron modes of all wavelengths. 
r i ca l  inequality is  satisfied and diocotron stability is guaranteed for 
e lectron beams which a r e  sufficiently thick relative to the distance between 
the two conducting electrodes.  

Physically this geomet- 

Some simple deductions can be made  directly f rom inequality (4. 1). 
F i r s t  i t  can be seen that thin electron beams ( c  M b) always have diocotron 
modes  of some wavelength which a r e  unstable. Secondly, i f  ei ther the 
inner  o r  outer conductor is  removed (i. e. a -, 0 o r  d -+ W ) ,  there  i s  
always a diocotron mode of some (sufficiently long) wavelength which i s  
unstable. Thus, for  the space radiation shield case  (d  -+ W) ? there  can be 
no geometr ical  a r rangement  of the electron beam and the inner conductor 
which will make diocotron modes of a l l  wavelengths stable. 
r equ i r e s  the system to be infinitely long - a point of crucial  importance 
which will be discussed later.  

This statement 

The two special  geometries in which the electron beam extends up to 
e i ther  conducting wall a r e  of particular interest .  In these cases  either 
a = b, o r  c = d, and the left side of inequality (3. 10) becomes a perfect 
square.  In addition, the left side of inequality (4. 1) vanishes for  these 
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cases .  
with ei ther  conductor. 
of Knauer16 that the diocotron instabil i ty i s  essent ia l ly  a n  interact ion 
between waves on two sur faces ;  
brought into contact with a perfect  conductor, instabil i ty can no longer 
resul t .  Actually, for  stability of diocotron modes  of all wavelengths it 
i s  not necessa ry  for  the conductor to  come into contact with the e lec t ron  
beam; it need only come close enough to  satisfy inequality (4. 1). 

Hence, stability is  guaranteed whenever the beam is i n  contact 
This  resu l t  i s  i n  agreement  with the observat ion 

when one wave i s  removed by being 

If, for  some choice of the geometr ica l  p a r a m e t e r s  a, by c y  and d, 
inequality (4. 1) i s  not satisfied,  t h e r e  i s  always some c r i t i ca l  value of k, 
kcrit ,  which makes  inequality (3. 10)  a n  equality. 
kcrit lead to  stable diocotron modes whereas  values of k s m a l l e r  than 
kcr i t  lead to growing o r  unstable diocotron modes.  
of example,  the value of kcrite for a few choices of the p a r a m e t e r s  a, by  
C ,  a ~ c !  d. 
e lectron beam becomes thicker  re la t ive to  the dis tance between the two 
conducting electrodes,  the c r i t i ca l  value of k,  kCTit, becomes  sma l l e r .  
Finally, as  the beam becomes  thick enough to  sat isfy inequality (4. l ) ,  
the value of kCrit goes to  z e r o  and stabil i ty i s  guaranteed for  diocotron 
modes of all wavelengths. 

Values of k l a r g e r  than 

Table I l i s t s ,  by way 

Frcm t h c s c  ~ I I I X C ~ I C Z . ~  result3 it caii L e  seeIi tilai a s  t h e  

A s  previously noted, i n  the space radiation shield case  (d- CO) 

inequality (4. 1) i s  not satisfied. 
wave numbers  between zero  and some kcr i t  will be unstable. However, 
i n  the toroidally-shaped space radiation shield the e lec t ron  beam i s  r e -  
entrant and a periodic boundary condition m u s t  be applied to  k. 
can take on only in tegra l  mult iples  of the minimum value of k,  kmin. In a 
torus ,  the maximum wavelength of waves propagating along the minor  ax i s  
of the t o r u s  is  approximately 2.lr t i m e s  the ma jo r  rad ius  R of the torus .  
Thus,  the minimum value of k is  given approximately by 

Therefore ,  the diocotron modes  with 

Thus,  k 

2s 
k m i n  2 sR 

e - = 1/R (4.2) 

If the space radiation shield i s  designed so  that k i s  l a r g e r  than kcr i t ,  
then a l l  of the diocotron modes possible for the r e -en t r an t  e lec t ron  beam 
would be stable. 

rnin 

In examining the space radiation shield c a s e  it is convenient to  con- 
s ider  a c r i t i ca l  value of c instead of k c r i  . 
value of kcrit dec reases  a s  c ( a  m e a s u r e  of the  th ickness  of the beam) 
increases .  The symbol c::: will be used to  denote that value of c which 
makes  kcr  . exactly equal to  kmin. Thus,  values  of c g r e a t e r  than c::: 
corrcsponA to stable e lec t ron  beams and vice ve r sa .  
radiation shield case the stability condition of inequality (3.  10)  m u s t  be 
modified by letting the radius  d of the outer  e lec t rode  approach infinity. 
Letting d--+ 00 , the stabil i ty condition of inequality (3.  10)  becomes  

A s  previously noted with 
respect  to Table I, f o r  constant values o I the p a r a m e t e r s  a and by  the 

In the space 

. 
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. 
TABLE I 

a 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

b 

2 

2 

3 

2 

2 

2 

3 

3 

3 

2 

2 

3 

2 

2 

3 

C 

3 

6 

6 

3 

3 

6 

4 

6 

8 

3 

6 

6 

3 

6 

6 

d 

4 

10 

10 

4 

10 

10 

10 

10 

10 

m 

m 

a) 

m 

m 

a) 

kc r i t  

1. 2 8  

0.37 

0.46 

1.20 

1.26 

0.11 

1. 30 

0.40 

0. 0 3  

1.25 

0 . 2 0  

0.41 

1. 32 

0. 38  

0.47 

Table  I. Value of kcrit above which stabil i ty ex is t s  and below which 
instabil i ty ex is t s  for given values of a ,  b, c,  and d. 
a, b, c,  and d a r e  a r b i t r a r y  and the units of kCrit a r e  the rec iproca l  
of these same  a r b i t r a r y  units. 

The units of 

- 17- 



The cr i t ical  value c:l: i s  found by making inequality (4. 3) a n  equality and 
solving the resulting equation numerically for the value of c which sat isf ies  
it. 

Fig. 3 is  a plot derived f rom the stability condition of inequality (4. 3). 

In Fig. 3 the absc issa  ( I - a / b )  measu res  how near  the inner edge 
Essentially,  i t  shows how thick the electron beam must  be to a s s u r e  
stability. 
of the electron heam i s  tn the n i d e r  edge ~f the t ~ r u s .  lVE,en { l = z / b )  = n " 9  

the electron beam touches the to rus  and ( in  the sense of this  section) 
stability i s  guaranteed. Since k is approximately kmin, the parameter  
ka is  approximately equal to a / R  (the radius ra t io  of the torus)  which can  
be considered a fixed quantity in  the stability analysis.  
is  approximately equal to c:::/R, a measu re  of the thickness of the electron 
beam relative to i ts  maximum thickness R. The region kc::: > 1 is not 
important in the present analysis  since this region is excluded fo r  toroidal 
geometry. 

Similar ly  kc::: 

F r o m  Fig. 3 it can be seen that a s  b approaches a, the c r i t i ca l  value 
c:: decreases .  
the torus ,  the required thickness of the electron beam becomes smal le r .  
Also,  for a given value of (1 -a /b ) ,  the ratio of the required thickness of the 
electron beam to the ma jo r  radius  R of the torus  becomes sma l l e r  for 
decreasing values of the parameter  ka (the minor  to ma jo r  radius  ra t io  
of the torus) .  Thus, i n  general ,  for  a reasonable e lectron beam thickness,  
the space radiation shield should be designed with a moderately la rge  major  
to  minor  radius  ratio and the inner edge of the electron beam a s  close as 
possible to the torus. A typical reading of Fig. 3 shows that for  (1 -a /b )  = 
0. 1 ( a / b  = 0.9) ,  and ka = 0.20  (a major  to minor  radius ra t io  for  the to rus  
of 5: l )  the beam thickness should be a t  least  45% of the major  radius  for  
stability. 

Physically this means  that a s  the beam is brought c loser  to 
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. 

1.2 

I .o 

0.f 

k c* 

0.E 

0.4 

0. i 

C 
) 0.2 0.4 0.6 0.8 I .o 

I -  o/b  

Fig. 3 Stability resu l t s  for the space radiation shield case  (d-,m) 
computed f rom inequality (4. 3 ) .  
and to  the left of each curve of constant ka  and regions of 
instability a r e  below and to the right of each curve. 

Regions of stability a r e  above 
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CONCLUSIONS 

Diocotron instabil i t ies in a cyl indrical  geometry  with a rad ia l  e lec-  
t r i c  field and a n  azimuthal magnetic f i e l d  h a v e  heen studied. 
extent that  the approximations of the analysis  a r e  valid, i t  h a s  been 
demonstrated that proper  selection of dimensions can  ensu re  stability 
against  diocotron instabil i t ies of all wavelengths in  this  geometry.  
application of th i s  theory to a proposed space radiation shield has been 
discussed. 
mated  by a cylinder, i t  has  been found that a space radiation shield of 
reasonable  physical proportions can be made stable against  diocotron 
instabil i t ies.  

T n  the 

The 

By fur ther  assuming that a to rus  can  be adequately approxi- 
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